The Problem With Phytic Acid In Grains, Nuts, Seeds and Beans!
Phytic acid in grains, nuts, seeds and beans represents a serious problem in our diets. This problem exists because we have lost touch with our ancestral heritage of food preparation. Instead we listen to food gurus and ivory tower theorists who promote the consumption of raw and unprocessed “whole foods;” or, we eat a lot of high-phytate foods like commercial whole wheat bread and all-bran breakfast cereals. But raw is definitely not Nature’s way for grains, nuts, seeds and beans. . . and even some tubers, like yams; nor are quick cooking or rapid heat processes like extrusion.
Phytic acid is the principal storage form of phosphorus in many plant tissues, especially the bran portion of grains and other seeds. It contains the mineral phosphorus tightly bound in a snowflake-like molecule. In humans and animals with one stomach, the phosphorus is not readily bioavailable. In addition to blocking phosphorus availability, the “arms” of the phytic acid molecule readily bind with other minerals, such as calcium, magnesium, iron and zinc, making them unavailable as well. In this form, the compound is referred to as phytate.
Phytic acid not only grabs on to or chelates important minerals, but also inhibits enzymes that we need to digest our food, including pepsin, needed for the breakdown of proteins in the stomach, and amylase, needed for the breakdown of starch into sugar. Trypsin, needed for protein digestion in the small intestine, is also inhibited by phytates.
Through observation we can witness the powerful anti-nutritional effects of a diet high in phytate-rich grains on people, with many health problems as a result, including tooth decay, nutrient deficiencies, lack of appetite and digestive problems.
The presence of phytic acid in so many enjoyable foods we regularly consume makes it imperative that we know how to prepare these foods to neutralize phytic acid content as much as possible, and also to consume them in the context of a diet containing factors that mitigate the harmful effects of phytic acid.
PHYTATES IN FOOD
Phytic acid is present in beans, seeds, nuts, grains—especially in the bran or outer hull; phytates are also found in tubers, and trace amounts occur in certain fruits and vegetables like berries and green beans. Up to 80 percent of the phosphorus—a vital mineral for bones and health—present in grains is locked into an unusable form as phytate.4 When a diet including more than small amounts of phytate is consumed, the body will bind calcium to phytic acid and form insoluble phytate complexes. The net result is you lose calcium, and don’t absorb phosphorus. Further, research suggests that we will absorb approximately 20 percent more zinc and 60 percent magnesium from our food when phytate is absent.
The amount of phytate in grains, nuts, legumes and seeds is highly variable; the levels that researchers find when they analyze a specific food probably depends on growing conditions, harvesting techniques, processing methods, testing methods and even the age of the food being tested. Phytic acid will be much higher in foods grown using modern high-phosphate fertilizers than those grown in natural compost.
Seeds and bran are the highest sources of phytates, containing as much as two to five times more phytate than even some varieties of soybeans, which we know are highly indigestible unless fermented for long periods. Remember the oat bran fad? The advice to eat bran, or high fiber foods containing different types of bran, is a recipe for severe bone loss and intestinal problems due to the high phytic acid content. Raw unfermented cocoa beans and normal cocoa powder are extremely high in phytates. Processed chocolates may also contain phytates. White chocolate or cocoa butter probably does not contain phytates. More evidence is needed as to phytate content of prepared chocolates and white chocolate. Coffee beans also contain phytic acid.
DETRIMENTAL EFFECTS
High-phytate diets result in mineral deficiencies. In populations where cereal grains provide a major source of calories, rickets and osteoporosis are common.
Interestingly, the body has some ability to adapt to the effects of phytates in the diet. Several studies show that subjects given high levels of whole wheat at first excrete more calcium than they take in, but after several weeks on this diet, they reach a balance and do not excrete excess calcium. However, no studies of this phenomenon have been carried out over a long period; nor have researchers looked at whether human beings can adjust to the phytate-reducing effects of other important minerals, such as iron, magnesium and zinc.
The zinc- and iron-blocking effects of phytic acid can be just as serious as the calcium-blocking effects. For example, one study showed that a wheat roll containing 2 mg phytic acid inhibited zinc absorption by 18 percent; 25 mg phytic acid in the roll inhibited zinc absorption by 64 percent; and 250 mg inhibited zinc absorption by 82 percent. Nuts have a marked inhibitory action on the absorption of iron due to their phytic acid content.
Over the long term, when the diet lacks minerals or contains high levels of phytates or both, the metabolism goes down, and the body goes into mineral-starvation mode. The body then sets itself up to use as little of these minerals as possible. Adults may get by for decades on a high-phytate diet, but growing children run into severe problems. In a phytate-rich diet, their bodies will suffer from the lack of calcium and phosphorus with poor bone growth, short stature, rickets, narrow jaws and tooth decay; and for the lack of zinc and iron with anemia and mental retardation.
Source: Ramiel Nagel
Reader Comments (1)
That is really fascinating, You’re an excessively professional blogger.
I have joined your feed and sit up for in the hunt for more of your fantastic post.
Additionally, I've shared your website in my social networks